Advanced SIEM: Architecture, Detection and Optimization

Advanced SIEM: Architecture, Detection and Optimization

This guide presents advanced concepts of Security Information and Event Management (SIEM): from modern architecture to sophisticated detection techniques, including optimization and best practices for a high-performing SOC.

Level: Advanced | Reading time: 15 minutes


πŸ“– What is a SIEM?

SIEM = Security Information and Event Management

A SIEM is a centralized platform that collects, analyzes and correlates all security events from your infrastructure to detect threats in real-time.

The 3 Pillars of SIEM

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                     THE 3 PILLARS OF SIEM                             β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                                     β”‚
β”‚   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚   β”‚   SECURITY    β”‚    β”‚  INFORMATION    β”‚    β”‚  EVENT          β”‚  β”‚
β”‚   β”‚               β”‚    β”‚                 β”‚    β”‚  MANAGEMENT     β”‚  β”‚
β”‚   β”‚ β€’ Protection  β”‚    β”‚ β€’ Centralizationβ”‚    β”‚ β€’ Collection   β”‚  β”‚
β”‚   β”‚ β€’ Detection   β”‚    β”‚ β€’ Context       β”‚    β”‚ β€’ Correlation  β”‚  β”‚
β”‚   β”‚ β€’ Response    β”‚    β”‚ β€’ History       β”‚    β”‚ β€’ Alerts       β”‚  β”‚
β”‚   β””β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β”‚           β”‚                      β”‚                      β”‚            β”‚
β”‚           β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜            β”‚
β”‚                                  β”‚                                   β”‚
β”‚                                  β–Ό                                   β”‚
β”‚                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                       β”‚
β”‚                    β”‚   UNIFIED PLATFORM     β”‚                       β”‚
β”‚                    β”‚                        β”‚                       β”‚
β”‚                    β”‚  β€’ Global Visibility   β”‚                       β”‚
β”‚                    β”‚  β€’ Informed Decisions  β”‚                       β”‚
β”‚                    β”‚  β€’ Automated Response  β”‚                       β”‚
β”‚                    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                       β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Simple Definition

A SIEM is like a "DVR" for your IT security:It records everything that happens πŸ”΄It allows you to go back in case of incident πŸ“ΌIt alerts in real-time in case of threat 🚨It centralizes all cameras (logs) in one place πŸ“Ί

A SIEM (Security Information and Event Management) is a cybersecurity solution that:

  • Collects security logs from the entire infrastructure
  • Aggregates and normalizes events in real-time
  • Correlates data to detect threats
  • Provides unified and centralized visibility
  • Enables incident detection and response

πŸ€” Why Do You Need a SIEM?

The Problem: Modern Complexity

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                 WITHOUT SIEM: CHAOS                                  β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                                    β”‚
β”‚  🏒 Your infrastructure:                                           β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”        β”‚
β”‚  β”‚ Cloud    β”‚ Servers  β”‚ Network  β”‚   Users  β”‚    IoT    β”‚        β”‚
β”‚  β”‚  (AWS)   β”‚ (Linux)  β”‚(Cisco)   β”‚(Windows) β”‚  (Camera) β”‚        β”‚
β”‚  β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜        β”‚
β”‚       β”‚          β”‚          β”‚          β”‚          β”‚              β”‚
β”‚       β–Ό          β–Ό          β–Ό          β–Ό          β–Ό              β”‚
β”‚   β”Œβ”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”          β”‚
β”‚   β”‚ Logs  β”‚  β”‚ Logs  β”‚  β”‚ Logs  β”‚  β”‚ Logs  β”‚  β”‚ Logs  β”‚          β”‚
β”‚   β”‚disperseβ”‚  β”‚disperseβ”‚  β”‚disperseβ”‚  β”‚disperseβ”‚  β”‚disperseβ”‚          β”‚
β”‚   β””β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”˜          β”‚
β”‚                                                                    β”‚
β”‚  ❌ Impossible to see the "big picture"                            β”‚
β”‚  ❌ Attacker slips through the cracks                              β”‚
β”‚  ❌ Investigation = Days of manual work                            β”‚
β”‚  ❌ Alert fatigue (noise)                                          β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                 WITH SIEM: VISIBILITY                              β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                                    β”‚
β”‚  🏒 Your infrastructure:                                           β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”        β”‚
β”‚  β”‚ Cloud    β”‚ Servers  β”‚ Network  β”‚   Users  β”‚    IoT    β”‚        β”‚
β”‚  β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜        β”‚
β”‚       β”‚          β”‚          β”‚          β”‚          β”‚              β”‚
β”‚       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜              β”‚
β”‚                             β”‚                                      β”‚
β”‚                             β–Ό                                      β”‚
β”‚                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                              β”‚
β”‚                    β”‚    SIEM πŸ”     β”‚                              β”‚
β”‚                    β”‚  Centralized    β”‚                              β”‚
β”‚                    β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜                              β”‚
β”‚                             β”‚                                      β”‚
β”‚                             β–Ό                                      β”‚
β”‚                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                              β”‚
β”‚                    β”‚  SOC Analyst πŸ‘¨β€πŸ’» β”‚                              β”‚
β”‚                    β”‚                 β”‚                              β”‚
β”‚                    β”‚ β€’ Unified view β”‚                              β”‚
β”‚                    β”‚ β€’ AI Detection β”‚                              β”‚
β”‚                    β”‚ β€’ Investigationβ”‚                              β”‚
β”‚                    β”‚ β€’ Auto responseβ”‚                              β”‚
β”‚                    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                              β”‚
β”‚                                                                    β”‚
β”‚  βœ… Everything centralized and correlated                         β”‚
β”‚  βœ… Detection of complex attacks                                   β”‚
β”‚  βœ… Investigation in minutes, not days                            β”‚
β”‚  βœ… Contextual and relevant alerts                                 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Concrete Benefits

Metric Without SIEM With SIEM Improvement
Time to detect Days/weeks Minutes/hours -90%
Investigation time 8-40 hours 1-4 hours -80%
Detection rate ~20% ~95% +375%
False positives 80%+ <20% -75%
Audit compliance Difficult Automatic +100%

Why is a SIEM Essential?

In a modern environment with hundreds of cloud services, containers, and microservices, security can no longer be done manually. The SIEM becomes the nerve center of the Security Operations Center (SOC).


πŸ“… When to Deploy a SIEM?

Warning Signs You Need One

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚           ⚠️  WARNING SIGNS: YOU NEED A SIEM                        β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                                     β”‚
β”‚  πŸ”΄ Recent incident not detected in time                           β”‚
β”‚     β†’ An attack happened, you discovered it by chance                β”‚
β”‚                                                                     β”‚
β”‚  πŸ”΄ Investigation takes hours/days                                   β”‚
β”‚     β†’ You search manually through logs on each server                β”‚
β”‚                                                                     β”‚
β”‚  πŸ”΄ Auditor asks for logs you can't find                             β”‚
β”‚     β†’ "Give us administrator access logs from March"               β”‚
β”‚       β†’ Panic because logs were overwritten                          β”‚
β”‚                                                                     β”‚
β”‚  πŸ”΄ You suspect intrusion but can't prove it                       β”‚
β”‚     β†’ "Did someone access customer data?"                          β”‚
β”‚       β†’ "I don't know, impossible to verify"                        β”‚
β”‚                                                                     β”‚
β”‚  πŸ”΄ Email alerts without context                                     β”‚
β”‚     β†’ 500 emails/day from your antivirus                             β”‚
β”‚       β†’ Your team ignores everything (alert fatigue)                   β”‚
β”‚                                                                     β”‚
β”‚  πŸ”΄ Regulatory compliance (GDPR, PCI-DSS, ISO 27001)                 β”‚
β”‚     β†’ Auditor: "Show us your consolidated logs"                    β”‚
β”‚       β†’ You: *cold sweat*                                            β”‚
β”‚                                                                     β”‚
β”‚  πŸ”΄ Complex multi-cloud infrastructure                               β”‚
β”‚     β†’ AWS + Azure + On-premise + Kubernetes                        β”‚
β”‚       β†’ No global visibility                                          β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Natural Evolution Toward SIEM

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              SECURITY MATURITY CURVE                                 β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                                     β”‚
β”‚   Maturity                                                          β”‚
β”‚      β–²                                                              β”‚
β”‚      β”‚                                          🎯 SIEM + SOAR      β”‚
β”‚   10 β”‚                                        β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”       β”‚
β”‚      β”‚                                  β”Œβ”€β”€β”€β”€β–Άβ”‚   Advanced  β”‚       β”‚
β”‚    8 β”‚                            β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”β”‚   Maturity   β”‚       β”‚
β”‚      β”‚                      β”Œβ”€β”€β”€β”€β–Άβ”‚  Full   β”‚β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜       β”‚
β”‚    6 β”‚                β”Œβ”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β” β”‚  SIEM   β”‚                        β”‚
β”‚      β”‚          β”Œβ”€β”€β”€β”€β–Άβ”‚  Basic   β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                        β”‚
β”‚    4 β”‚    β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β” β”‚  SIEM    β”‚                                   β”‚
β”‚      β”‚    β”‚ Centralβ”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                                   β”‚
β”‚    2 β”‚ β”Œβ”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”˜                                                β”‚
β”‚      β”‚ β”‚ Logs   β”‚                                                   β”‚
β”‚    0 β”œβ”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Ά  β”‚
β”‚      1    5    10    20    50    100   500   1000                   β”‚
β”‚                           Employees / Infrastructure                 β”‚
β”‚                                                                     β”‚
β”‚  πŸ”΅ Phase 1 : Central logs simple (< 50 employees)                 β”‚
β”‚  🟒 Phase 2 : Basic SIEM (50-200 employees)                        β”‚
β”‚  🟑 Phase 3 : Full SIEM (200-1000 employees)                        β”‚
β”‚  🟠 Phase 4 : SIEM + SOAR (> 1000 employees)                       β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚         πŸ“… IDEAL TIMELINE FOR SIEM DEPLOYMENT                        β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                                     β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”           β”‚
β”‚  β”‚   Phase 1  β”‚   Phase 2  β”‚   Phase 3  β”‚   Phase 4   β”‚           β”‚
β”‚  β”‚   Day 1    β”‚  Month 1-3 β”‚  Month 4-6 β”‚  Month 7-12β”‚           β”‚
β”‚  β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€           β”‚
β”‚  β”‚ πŸ“‹ Audit   β”‚ πŸ”§ Install β”‚ 🎯 Custom  β”‚ πŸ€– SOAR    β”‚           β”‚
β”‚  β”‚    logs    β”‚  & config  β”‚  rules     β”‚ Playbooks  β”‚           β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜           β”‚
β”‚                                                                     β”‚
β”‚  Phase 1 : Identify critical sources                                 β”‚
β”‚     β†’ Cloud infrastructure, Active Directory, Firewalls             β”‚
β”‚                                                                     β”‚
β”‚  Phase 2 : Progressive deployment                                    β”‚
β”‚     β†’ Start with most critical logs                                 β”‚
β”‚     β†’ Avoid "big bang"                                               β”‚
β”‚                                                                     β”‚
β”‚  Phase 3 : Business-specific detection                               β”‚
β”‚     β†’ Rules specific to your industry                               β”‚
β”‚     β†’ Ex: Finance = fraud detection                                   β”‚
β”‚       Ex: Healthcare = patient data access                        β”‚
β”‚                                                                     β”‚
β”‚  Phase 4 : Automation (SOAR)                                        β”‚
β”‚     β†’ Automated response to common threats                          β”‚
β”‚     β†’ Investigation playbooks                                        β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

ROI: SIEM Pays for Itself Quickly

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              πŸ’° ROI CALCULATION (Return on Investment)                  β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                                     β”‚
β”‚  INVESTMENT (SIEM Cost)                                             β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                         β”‚
β”‚  β”‚ β€’ SIEM License : $50K - $300K/year   β”‚                         β”‚
β”‚  β”‚ β€’ Infrastructure : $20K - $100K        β”‚                         β”‚
β”‚  β”‚ β€’ Team Training : $10K - $30K          β”‚                         β”‚
β”‚  β”‚ β€’ Integration : $15K - $50K            β”‚                         β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                         β”‚
β”‚                       Total : ~$100K - $500K first year             β”‚
β”‚                                                                     β”‚
β”‚  SAVINGS (Benefits)                                                 β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                         β”‚
β”‚  β”‚ β€’ Analyst time saved : +$200K/year    β”‚                         β”‚
β”‚  β”‚ β€’ GDPR fine avoided : $2M+           β”‚                         β”‚
β”‚  β”‚ β€’ Data breach avoided : Incalculable   β”‚                         β”‚
β”‚  β”‚   value (reputation)                   β”‚                         β”‚
β”‚  β”‚ β€’ Cyber insurance : -30% premium      β”‚                         β”‚
β”‚  β”‚ β€’ SOC productivity : +300%             β”‚                         β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                         β”‚
β”‚                                                                     β”‚
β”‚  🎯 ROI = Typically < 6-12 months                                  β”‚
β”‚                                                                     β”‚
β”‚  Real example :                                                      β”‚
β”‚  ───────────────                                                     β”‚
β”‚  Average data breach cost = ~$3.86M (IBM Cost of Breach)            β”‚
β”‚  A SIEM detecting and stopping an attack = Instant ROI             β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Modern SIEM Architecture

An effective SIEM architecture relies on 5 key components:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                  LOG SOURCES                                 β”‚
β”‚  (Cloud, On-premise, Network, Endpoints, Applications)       β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                     β”‚
                     β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                   COLLECTORS                                 β”‚
β”‚  β€’ Kafka          β€’ Fluentd          β€’ Logstash             β”‚
β”‚  β€’ Beats          β€’ Vector            β€’ Syslog-ng            β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                     β”‚
                     β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              INGESTION & PROCESSING                          β”‚
β”‚  β€’ Buffering      β€’ Parsing          β€’ Enrichment            β”‚
β”‚  β€’ Normalization  β€’ Filtering         β€’ Tagging              β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                     β”‚
                     β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                   STORAGE                                    β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”          β”‚
β”‚  β”‚   Hot       β”‚  β”‚   Warm      β”‚  β”‚   Cold      β”‚          β”‚
β”‚  β”‚ (1-7 days)  β”‚  β”‚ (1-3 months)β”‚  β”‚ (1+ year)   β”‚          β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜          β”‚
β”‚       β”‚                β”‚                β”‚                     β”‚
β”‚       β–Ό                β–Ό                β–Ό                     β”‚
β”‚  Elasticsearch    S3/Glacier         Archive                  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                     β”‚
                     β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              CORRELATION & DETECTION                          β”‚
β”‚  β€’ SIEM Rules     β€’ Machine Learning    β€’ UEBA              β”‚
β”‚  β€’ Threat Intel   β€’ ATT&CK Mapping      β€’ Anomalies         β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                     β”‚
                     β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              INTERFACE & RESPONSE (SOAR)                     β”‚
β”‚  β€’ Dashboards     β€’ Investigations     β€’ Alerts             β”‚
β”‚  β€’ Playbooks      β€’ Automation         β€’ Cases              β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

The 5 Essential Components

1. Collectors (Forwarders)

Collection agents retrieve logs at the source:

Agent Use Case
Filebeat Linux/Windows file logs
Winlogbeat Windows events
Metricbeat System metrics
Fluentd Containers, Kubernetes
Vector High performance, Rust
Syslog-ng Network, legacy devices

Optimal configuration:

# Filebeat example
filebeat.inputs:
- type: log
  paths:
    - /var/log/nginx/*.log
  fields:
    service: nginx
    environment: production
  fields_under_root: true
  multiline.pattern: '^[[:space:]]'
  multiline.negate: false
  multiline.match: after

output.kafka:
  hosts: ["kafka1:9092", "kafka2:9092"]
  topic: 'logs-nginx'
  compression: gzip

2. Ingestion Processors

Real-time processing includes:

  • Parsing: Field extraction (JSON, CSV, regex)
  • Normalization: Mapping to common schema (ECS, CIM)
  • Enrichment: Adding context (IP geolocation, threat intel)
  • Filtering: Noise and duplicate removal

Enrichment example:

{
  "source_ip": "192.168.1.100",
  "enrichment": {
    "geo": {
      "country": "United States",
      "city": "New York",
      "asn": "AS7922"
    },
    "threat_intel": {
      "reputation": "clean",
      "tor_exit_node": false,
      "known_bot": false
    }
  }
}

3. Storage and Indexing

Tiering strategy:

Tier Duration Storage Usage
Hot 1-7 days SSD/NVMe Real-time search, alerts
Warm 7-90 days HDD Investigation, dashboards
Cold 3-12 months Object Storage Compliance, forensics
Frozen 1-7 years Archive Legal audit, retention

4. Correlation Engine

The heart of SIEM for detection:

  • Complex correlation rules
  • Behavioral detection (UEBA)
  • Machine Learning for anomalies
  • MITRE ATT&CK mapping

5. Interface and SOAR

Key features:

  • Real-time dashboards
  • Advanced forensic search
  • Case investigation management
  • Automated response (SOAR)

Advanced Correlation Rules

Types of Correlation

1. Temporal Correlation

Detection based on thresholds within a time window:

# Example: Brute force detection
detection:
  selection:
    EventID: 4625  # Windows login failure
  timeframe: 5m
  condition: selection | count() by SourceIP > 10
  
alert:
  title: "Brute Force Detection"
  severity: high
  description: "More than 10 login failures in 5 minutes"

2. Sequential Correlation

Detection of multi-stage attack patterns:

# Example: Lateral Movement
detection:
  step1:
    EventID: 4624  # Successful login
    LogonType: 3   # Network logon
  step2:
    EventID: 4688  # Process creation
    CommandLine|contains: 
      - 'powershell'
      - 'cmd.exe'
  step3:
    EventID: 5145  # Network share access
  
  condition: step1 followed by step2 within 1m followed by step3 within 5m

3. Statistical Correlation

Anomaly detection compared to baseline:

# ML pseudo-code
baseline = calculate_baseline(user, "login_count", window="30d")
current = count_events(user, "login", window="1h")

if current > baseline.mean + (3 * baseline.std):
    alert("Anomalous login volume detected")

4. Chain Correlation

Complex attack detection (MITRE ATT&CK):

Step 1: Initial Access (Phishing)
    ↓
Step 2: Execution (Malicious macro)
    ↓
Step 3: Persistence (Registry run key)
    ↓
Step 4: Privilege Escalation (Token impersonation)
    ↓
Step 5: Lateral Movement (PSExec)
    ↓
Step 6: Exfiltration (Data compression)

Advanced Rule Examples

Credential Stuffing:

IF:
  > 5 login failures IN 60 seconds
  AND
  Source IP not in whitelist
  AND
  Valid login SUCCESS after failures
THEN:
  Priority: CRITICAL
  Type: Credential Stuffing suspected
  Action: Alert + Temporary IP block

Data Exfiltration:

IF:
  Outbound volume > 10x user baseline
  AND
  Connection to non-whitelisted IP
  AND
  Unusual time (weekend/night)
THEN:
  Priority: HIGH
  Type: Potential exfiltration
  Action: SOC Alert + Quarantine

Advanced Detection Techniques

1. UEBA (User and Entity Behavior Analytics)

Behavioral analysis of users and entities:

Established profiles:

  • Usual connection hours
  • Geographic locations
  • Data access volume
  • Used applications
  • Peers (colleagues with similar patterns)

Anomaly detection:

Anomaly Example
Unusual connection Login at 3 AM from a foreign country
Abnormal volume Downloading 10GB when baseline = 100MB
Privileged access First use of sudo/root
Deviant behavior Accessing never-before-consulted files
Insider threat Searching for sensitive keywords

2. ATT&CK Mapping

Mapping SIEM rules to MITRE ATT&CK techniques:

# Mapping example
detection:
  name: "Suspicious PowerShell Download"
  mitre:
    technique: T1059.001  # Command and Scripting Interpreter: PowerShell
    tactic: TA0002       # Execution
    sub_technique: T1105 # Ingress Tool Transfer
  
  query: >
    ProcessName: "powershell.exe"
    AND CommandLine: "*Invoke-WebRequest*"
    AND CommandLine: "*http*"
  
  false_positives:
    - "Legitimate admin scripts"
    - "Automated updates"
  
  level: high

ATT&CK Coverage:

  • Identify uncovered techniques
  • Prioritize detections by criticality
  • Measure SOC maturity

3. Threat Intelligence Integration

Enrichment with IOCs (Indicators of Compromise):

CTI Sources:

  • MISP (Malware Information Sharing Platform)
  • AlienVault OTX
  • IBM X-Force
  • VirusTotal
  • Commercial feeds (Recorded Future, CrowdStrike)

IOC Types:

  • Malicious IPs
  • C2 domains
  • File hashes
  • Suspicious User-Agents
  • Malicious SSL certificates

Implementation:

# Automatic lookup
def enrich_ip(ip_address):
    reputation = threat_intel_lookup(ip_address)
    return {
        "ip": ip_address,
        "reputation": reputation.score,
        "categories": reputation.categories,
        "first_seen": reputation.first_seen,
        "sources": reputation.feeds
    }

4. Machine Learning for Detection

Algorithms used:

Algorithm Usage Example
Clustering (K-means) Grouping similar events Attack campaign detection
Isolation Forest Anomaly detection Rare activity detection
LSTM Temporal sequences Access pattern prediction
Random Forest Classification Risk scoring
Graph Analysis Entity relationships Lateral movement detection

ML Use Cases:

  • DGA (Domain Generation Algorithm) detection
  • Unknown log classification
  • User risk scoring
  • SOC ticket prediction

Optimization and Performance

Noise Reduction (Alert Fatigue)

Problem: 10,000+ alerts/day β†’ SOC team overwhelmed

Solutions:

  1. Deduplication:
# Group similar alerts
alert_group = {
    "signature": "Brute Force",
    "source_ip": "192.168.1.100",
    "target": "[email protected]",
    "count": 47,
    "first_seen": "2026-02-15T10:00:00Z",
    "last_seen": "2026-02-15T10:05:23Z"
}
  1. Temporal aggregation:
    • Group events by time window
    • Threshold before alert creation
  2. Context enrichment:
    • Check if IP is internal/external
    • Check working hours
    • Check user history
  3. Smart filtering:
    • Whitelist known IPs
    • Blacklist known false positives
    • Correlate with planned changes

Storage Optimization

Cost reduction strategies:

Technique Reduction Impact
Compression 50-70% CPU + search time
Upfront filtering 30-50% Potential event loss
Sampling 90%+ Partial investigation
Tiering 60-80% Cold storage latency

Optimized indexing:

  • Index only searched fields
  • Use dynamic mappings with constraints
  • Archive old indexes

Quality Assurance

Continuous validation:

  1. Rule testing:
    • Test environment before production
    • Known attack datasets
    • Scenario simulation
  2. Purple Teaming:
    • Red team attacks
    • Blue team detects
    • Collaborative improvement
  3. Detection metrics:
    • MTTD (Mean Time To Detect)
    • MTTR (Mean Time To Respond)
    • False positive/negative rates
    • ATT&CK coverage

Solution Comparison

SIEM Strengths Weaknesses Price
Splunk Powerful search, ecosystem, SPL High cost, complexity $$$$
Elastic SIEM Open source, performant, scalable Complex configuration $$
Microsoft Sentinel Azure integration, built-in ML Microsoft lock-in, data costs $$-$$$
IBM QRadar Advanced correlation, stability Dated interface, cost $$$
Wazuh Open source, full stack, lightweight Less enterprise features $
Google Chronicle Unlimited scale, data pricing Less mature, cloud only $$
Sumo Logic Cloud native, DevOps friendly Latency, ingestion costs $$

Choice by Context

Startup / Limited Budget:

  • Wazuh (open source)
  • Elastic SIEM (self-hosted)

Cloud-first Enterprise:

  • Microsoft Sentinel (Azure)
  • Google Chronicle (GCP)
  • Sumo Logic (Multi-cloud)

On-premise Enterprise:

  • Splunk Enterprise
  • IBM QRadar
  • Elastic SIEM

KPIs and SOC Metrics

Essential Performance Indicators

1. MTTD (Mean Time To Detect)

  • Time between attack and detection
  • Target: < 24h (ideally < 1h)

2. MTTR (Mean Time To Respond)

  • Time between detection and containment
  • Target: < 4h (ideally < 1h)

3. False Positives

  • Percentage of non-relevant alerts
  • Target: < 20% of total alerts

4. ATT&CK Coverage

  • Percentage of covered techniques
  • Target: > 80% of critical techniques

5. Alert Volume

  • Alerts/day per analyst
  • Target: 10-20 alerts/analyst/day

6. Dwell Time

  • Attacker presence time
  • Target: Constant reduction

Best Practices

10 SIEM Commandments

  1. Plan before deploying
    • Define priority use cases
    • Understand log sources
    • Size correctly
  2. Collect maximum
    • Raw logs before filtering
    • Better too much than too little
    • Archive intelligently
  3. Normalize formats
    • Adopt a standard (ECS, CIM)
    • Document schemas
    • Consistent mappings
  4. Document exhaustively
    • Detection rules
    • Response playbooks
    • ATT&CK mappings
    • Investigation procedures
  5. Test regularly
    • Purple team exercises
    • Red team assessments
    • Tabletop exercises
  6. Automate response
    • SOAR for repetitive tasks
    • Automated playbooks
    • Automatic quarantine
  7. Train continuously
    • SOC analyst training
    • Technology monitoring
    • Certifications (GCIH, GCIA)
  8. Optimize costs
    • Intelligent tiering
    • Selective filtering
    • License review
  9. Measure and improve
    • KPI dashboards
    • Regular rule review
    • Threshold adjustment
  10. Stay pragmatic
    • Avoid "security theater"
    • Focus on real risks
    • Iterate and improve

Conclusion

A modern SIEM is not just a log collection tool, it's a threat detection and response platform that requires:

  • A well-designed architecture (scalable and cost-effective)
  • Relevant and maintained correlation rules
  • Integration with threat intelligence
  • Advanced techniques (UEBA, ML)
  • A trained and equipped SOC team
  • A continuous improvement process

Investment in a well-configured SIEM is measured in shorter detection and response times, and ability to detect advanced threats that would evade traditional controls.


References

Article written on February 15, 2026 - based on industry best practices